Internal Documentation
Internal documentation for SymplecticMapTools.jl
Contents
Index
SymplecticMapTools.cheb_roots_to_rootsSymplecticMapTools.chebyshev_companion_matrixSymplecticMapTools.evaluateSymplecticMapTools.get_NSymplecticMapTools.palindromic_cheb_rootsSymplecticMapTools.palindromic_to_chebyshev
Fourier Circles
SymplecticMapTools.get_N — Functionget_N(z::FourierCircle)Get number of unknown parameters per circle in island, excluding τ
SymplecticMapTools.evaluate — Functionevaluate(z::FourierCircle, θ::AbstractVector{T}; i_circle::Integer=1) where {T}Evaluate the i_circleth circle in the chain at a vector of points θ
evaluate(z::InvariantCircle, θ::Number; i_circle::Integer=1)Evaluate the i_circleth circle in z at the point θ
evaluate(c::ConnectingOrbit, x::AbstractArray; i_p::Integer=1)Evaluate the i_pth connecting orbit at a set of points x[j] in [0,1]
evaluate(c::ConnectingOrbit, x::Number; i_p::Integer=1)Evaluate the i_pth connecting orbit at a point x in [0,1]
evaluate(k::KernelLabel, x::AbstractArray)Evaluate the kernel matrix at the columns of x
evaluate(c::ContFrac)Find a floating point representation of the continued fraction.
Birkhoff Extrapolation
SymplecticMapTools.palindromic_to_chebyshev — Functionpalindromic_to_chebyshev(c::AbstractVector)Input:
c: A palindromic set of monomial coefficients for polynomialp(z)
Output:
v: The coefficients of a Chebyshev polynomialqs.t.q((z+inv(z))/2) = p(z)
SymplecticMapTools.palindromic_cheb_roots — Functionpalindromic_cheb_roots(c::AbstractVector)Get the roots of the chebyshev polynomial associated with the palindromic polynomial with coefficients c.
Input:
c: A palindromic set of monomial coefficients for polynomialp(z)
Output:
v: The roots of the polynomialqsatisfyingq((z+inv(z))/2) = p(z)
SymplecticMapTools.chebyshev_companion_matrix — Functionchebyshev_companion_matrix(v::AbstractVector)Input:
v: The coefficients of a Chebyshev polynomial
Output:
C: The Chebyshev companion (colleague) matrix of polynomialv
SymplecticMapTools.cheb_roots_to_roots — Functioncheb_roots_to_roots(μs)Input:
μs: The roots of the polynomial satisfyingq((z+inv(z))/2) = p(z), wherepis a palindromic polynomial
Output:
λs: The roots ofp