Internal Documentation
Internal documentation for SymplecticMapTools.jl
Contents
Index
SymplecticMapTools.cheb_roots_to_roots
SymplecticMapTools.chebyshev_companion_matrix
SymplecticMapTools.evaluate
SymplecticMapTools.get_N
SymplecticMapTools.palindromic_cheb_roots
SymplecticMapTools.palindromic_to_chebyshev
Fourier Circles
SymplecticMapTools.get_N
— Functionget_N(z::FourierCircle)
Get number of unknown parameters per circle in island, excluding τ
SymplecticMapTools.evaluate
— Functionevaluate(z::FourierCircle, θ::AbstractVector{T}; i_circle::Integer=1) where {T}
Evaluate the i_circle
th circle in the chain at a vector of points θ
evaluate(z::InvariantCircle, θ::Number; i_circle::Integer=1)
Evaluate the i_circle
th circle in z
at the point θ
evaluate(c::ConnectingOrbit, x::AbstractArray; i_p::Integer=1)
Evaluate the i_p
th connecting orbit at a set of points x[j]
in [0,1]
evaluate(c::ConnectingOrbit, x::Number; i_p::Integer=1)
Evaluate the i_p
th connecting orbit at a point x
in [0,1]
evaluate(k::KernelLabel, x::AbstractArray)
Evaluate the kernel matrix at the columns of x
evaluate(c::ContFrac)
Find a floating point representation of the continued fraction.
Birkhoff Extrapolation
SymplecticMapTools.palindromic_to_chebyshev
— Functionpalindromic_to_chebyshev(c::AbstractVector)
Input:
c
: A palindromic set of monomial coefficients for polynomialp(z)
Output:
v
: The coefficients of a Chebyshev polynomialq
s.t.q((z+inv(z))/2) = p(z)
SymplecticMapTools.palindromic_cheb_roots
— Functionpalindromic_cheb_roots(c::AbstractVector)
Get the roots of the chebyshev polynomial associated with the palindromic polynomial with coefficients c
.
Input:
c
: A palindromic set of monomial coefficients for polynomialp(z)
Output:
v
: The roots of the polynomialq
satisfyingq((z+inv(z))/2) = p(z)
SymplecticMapTools.chebyshev_companion_matrix
— Functionchebyshev_companion_matrix(v::AbstractVector)
Input:
v
: The coefficients of a Chebyshev polynomial
Output:
C
: The Chebyshev companion (colleague) matrix of polynomialv
SymplecticMapTools.cheb_roots_to_roots
— Functioncheb_roots_to_roots(μs)
Input:
μs
: The roots of the polynomial satisfyingq((z+inv(z))/2) = p(z)
, wherep
is a palindromic polynomial
Output:
λs
: The roots ofp